
Prost Users Guide

Morten N. Åsnes ∗

Bjarte Bogstad <bjarte.bogstad@imr.no>
IMR, Bergen, Norway

January 14, 2014

Contents

1 Introduction 3

2 Installation 4

3 Running Prost 5
3.1 Command Line Options . 5
3.2 Scripting . 5

4 Prost Input Files 6
4.1 Control file . 6

4.1.1 Weight And Maturity option . 7
4.2 Population File . 8

4.2.1 No distortion . 8
4.2.2 Normally distributed distortion 8
4.2.3 Multivariate lognormally distributed distortion 9

4.3 Recruitment File . 9
4.3.1 Recruitment Functions . 9
4.3.2 Recruitment Error . 12
4.3.3 Special recruitment functions . 12

4.4 Management File . 13
4.4.1 Constant F Rule . 14
4.4.2 Lookahead Rule . 15
4.4.3 3-year Rule . 16
4.4.4 Tac Rule . 17

4.5 Density dependent processes . 17
4.5.1 Growth (stockweight and catchweight) 18
4.5.2 Maturity . 18
4.5.3 Cannibalism . 19

4.6 Historic weight and maturity . 20

∗No longer at IMR, please contact bjarte.bogstad@imr.no for questions regarding Prost

1

mailto:bjarte.bogstad@imr.no

5 Prost Output Files 20

6 Suggested extensions 20

7 References 21

2

1 Introduction

This document describes the prognosis program Prost (Projections Stochastic), version
0.1. The purpose of the program is to perform stochastic projections using an age struc-
tured population model, for given management rules. The program starts with a given
population, which is then projected into the future and subjected to natural mortal-
ity and fishing. Fishing level is given by a management rule. Stochastic errors can be
added to the initial starting population (numbers, weight, maturity, etc.), and to the
recruitment. In addition errors can be added to the population before it is seen by the
management rule (assessment error), and to the decided quota (implementation error).
Each model simulation will thus give a different realization of the projection. The model
works as described in Skagen et al. (2003). A yearly time step is used. The following
figure illustrates a single realization of the model.

The program was developed for use in the evaluation of the proposed harvest control
rule for Northeast Arctic cod (Bogstad et al. 2004), but is generally applicable for mak-
ing single-species, single-fleet, single-area stochastic projections using an age-structured

3

population model. Weight at age and maturity at age can be density-dependent, and
a variety of harvest control rules can be applied. It is easy to add more options for
density-dependent weight/maturity at age as well as additional harvest control rules.

The ICES Study group on Long term Advice (ICES 2004a) as well as the ICES
Methods Working group (ICES 2004b) have discussed existing tools similar to Prost.
Such tools include WGMTERM, ICP, STPR and CS5.

The model does not assume any specific unit in the input and output files. It is up
to the user to make sure that units for numbers and weight match up. In the manual we
assume that numbers are in thousands and weights are in tons.

2 Installation

Prost is written in Java, and can therefore run on any platform where a Java runtime
version is available.

If you’re not developing Java software yourself, it is sufficient to download the JRE
(Java Runtime Environment). Verify that you have a suitable Java installation by typing
java -version in a Dos or Terminal window. The output should be something like this:

java version "1.7.0_45"

Java(TM) SE Runtime Environment (build 1.7.0_45-b18)

Java HotSpot(TM) 64-Bit Server VM (build 24.45-b08, mixed mode)

Please notice that the Java Browser Plugin is not sufficient for running Java Applica-
tions like Prost.

An up to date JRE can be downloaded at http://www.oracle.com/technetwork/

java/javase/downloads/jre7-downloads-1880261.html. The download should be named
jre-7u45-windows-i586.exe or similar for the 32 bit version, or jre-7u45-windows-x64.exe
or similar for the 64 bit version. The download consists of a setup program, which must
then be run to install Java on your computer.

After running the installer try to run java -version from a DOS windows again to
verify that the correct Java version is found.

If for some reason Windows can still not find the installed Java version, you will
have to configure your the windows Path environment variable to include the path where
java.exe is installed. First, locate directory where java.exe is in installed. It should
typically be something like c:\Program Files\Java\jre7\bin. Now, to add this di-
rectory to the system path, click Start, then Control Panel, then System. Then click
Advanced and Environment Variables. Now edit the Path under System Variables, and
add the java directory to the end, separated from the previous entry by a semicolon. The
new path should be in effect when you open a new command window.

As an alternative, it is possible to change the path temporarily in a single command
window. In a command windows, type the following: set path=%path%;c:\Program
Files\Java\jre7\bin (but change the path to reflect where Java is installed on your
machine). Now the new path will be in effect only in the current window until it is closed.

Prost comes packaged as a single file called prost.jar. It is most convenient to place
this file together with the input files in the directory where you intend to run the program.

4

http://www.oracle.com/technetwork/java/javase/downloads/jre7-downloads-1880261.html
http://www.oracle.com/technetwork/java/javase/downloads/jre7-downloads-1880261.html

3 Running Prost

To run Prost, type java -jar prost.jar. This will read the file stock.dat, and start
a run. Output will appear in various text files (.csv files which can be read into Excel).
See Section 5 for more detail on the output files.

3.1 Command Line Options

To control how many simulations to perform, add the command line option -i nr of simulations.
For example; to run 1000 simulations you type: java -jar prost.jar -i 1000. The
default is 100 simulations. The option -o produces very detailed output to the file
out.csv. When doing many simulations this file will become very large. It is usually
only needed for debugging.

To specify a seed for the random number generator, use the option -r seed where
seed is an integer.

The option -v will print some more information to the screen as the input files are
read in. This will be helpful in tracking down any mistakes in the input files.

It is possible to set the fishing level on the command line with the option -f flevel.
If this option is used, the given value will override the FaboveBpa parameter from the
management file (Section 4.4).

When this option is used, all output files will have a prefix added to their name, to
distinguish output files from different runs. For instance; if the option -f 0.4 is used the
summary file will be named F0.4-summary.csv.

This option can be useful when one wants to automate the task of running Prost with
different fishing levels. The script prost.js can do this on Windows. See Section 3.2 for
details on how to use the Prost.js script.

The option -s portnr specifies that Prost should communicate with an external
program on the specified port. During the simulation Prost will then read data from this
socket each year,

The data read from the socket is weight in stock, weight in catch, maturity, and
natural mortality. Prost will then write the number of the start of the next year back
over the socket.

3.2 Scripting

A script is provided with the Prost distribution, for doing multiple runs, with different
fishing levels. The script will accept all the usual Prost arguments, but the -f option is
handled differently. This option is now followed by three values: The smallest fishing level
to use, the largest fishing level, and a step-value. The script will run Gadget multiple
times, starting with the smallest fishing level, increasing the level by the step value each
time, up to and including the given max level. The script is called prost.js, and it will
only work on the Windows platform. The complete syntax is as follows:

prost.js -f minf maxf stepf <ordinary prost options>

The script expects the Prost program (prost.jar) to be in the same directory as the
script is running from, or the directory above it. If prost.jar can not be found, the
script will exit with an error message.

5

4 Prost Input Files

All input files are pure text files. They generally consist of keyword – value pairs, in a
predefined order. Comments can be introduced with a semicolon. The rest of the line
following the semicolon is treated as a comment.

4.1 Control file

The control file must reside in the directory where Prost is started, and it must be named
stock.dat. This file specifies the age range and time span to run the model for. It also
lists all the other input files. An example of the file:

name Torsk

firstyear 2003 ; intermediate year

lastyear 2028 ; last prediction year

extrayears 5 ; extra years after lastyear

minage 3 ; recruitment age

maxage 13 ; +group

fbarmin 5

fbarmax 10

bpa 460000

blim 220000

flim 0.49

maxthreshold 20

minthreshold 20

maxf 0.9

summarystart 2004

summaryend 2028

population pop.dat

recruitment rec.dat

management manage.dat

weightandmaturity density

file density.dat

The keywords are explained in Table 1.
The model will start some years before the intermediate year because data from earlier

years might be needed for the recruitment function. And because the management rule
may look several years into the future when setting the quota, the model may also run
for several years after the last year.

The numbers of years to run before firstyear is determined by the minimum age
in the model. Thus if minage = 2, the program will require data for two years before
startyear. The number of years to run after lasteyear depends on several things. Firstly,
the model must run at least minage years after lastyears, this is because of the way the
recruitment function is implemented. Then, if the lookahead management rule is used,
the model must run as many years after lastyear as the lookahead management rule is
set to look into the future. Lastly, there is the keyword extrayears in the control file,
where the user can specify how many years after lastyear of data are in certain input

6

Table 1: Keywords in control file
Keyword Type Description
name string Name of the stock
firstyear integer Intermediate year (assessment year)
lastyear integer Last year that a quota will be given for
extrayears integer Extra years needed (for management rule) after

lastyear (optional)
minage integer Minimum age
maxage integer Maximum age
fbarmin integer Minimum age for reference F calculation
fbarmax integer Maximum age for reference F calculation
bpa double Bpa value
blim double Blim value
flim double Flim value
maxthreshold double Threshold for counting a year as having a big in-

crease in quota
minthreshold double Threshold for counting a year as having a big de-

crease in quota
maxf double Maximum fishing mortality
summarystart integer First year in summary output
summaryend integer Last year in summary output
population string Filename for population data
recruitment string Filename for recruitment function definition
management string Filename for management rule definition
weightandmaturity string Option for weight and maturity
file string Filename for density dependent, or historic weight

and maturity (optional)

files. Thus the number of years to run after lastyear will be the largest value of minage,
extrayears, and years (in the lookahead rule). We will call this last year of the model
YN in the discussion below.

The Bpa value is used only as a trigger point in the constant F rule (Section 4.4.1) and
the lookahead rule (Section 4.4.2). The Blim value is only used for calculating P (SSB <
Blim) in the summary output. The values Flim, maxthreshold, and minthreshold are
also used only for printing.

4.1.1 Weight And Maturity option

The keyword weightandmaturity indicates how weights and maturity are modeled. The
option must be one of initial, density, or historic. If the option is initial, the weight and
maturity comes from the population file, in the format specified below. If the option
density or historic is given, the next line of the file must give a filename where these
options are further specified. The format for the density option is specified in Section 4.5
The historic option is described in Section 4.6. Note that even if the density or historic
option is given, the initial population file must still contain weight and maturity.

7

4.2 Population File

The name of the population file is given in the control file. As mentioned above, all data
given here must start in the year firstyear−minage, but depending on which recruitment
function is used, the data before firstyear might not be used. The following sets of data
must be given (Table 2). Yi is the intermediate year (firstyear), Y0 is firstyear−minage,
and YN is the last year of the model run as defined above.

Table 2: Input data type keywords and ranges
Keyword Range Description
[numbers] Y0 −→ Yi Population numbers up to and including intermediate

year
[fishingmortality] Y0 −→ Yi Fishing mortality up to and including intermediate year
[naturalmortality] Y0 −→ YN Natural mortality for the whole time period
[stockweight] Y0 −→ YN Stock weight for the whole time period
[catchweight] Y0 −→ YN Catch weight for the whole time period
[maturity] Y0 −→ YN Maturity for the whole time period

Each set of data has the following general format:

[keyword]

expected

<age vector of expected values 1>

...

<age vector of expected values N>

distortion <distortion 1>

...

distortion <distortion N>

The keyword identifies the type of data. Each age vector gives the expected value
for each age in a given year. Each distortion then specifies how to draw a random value
around the expected. The distortion format can be one of the following:

4.2.1 No distortion

distortion none

This will use the expected value directly, no error is added.

4.2.2 Normally distributed distortion

distortion normal

cv <cv age vector>

[bias <Optional bias age vector>]

trunk <truncation>

This will draw from a normal distribution with expected value as above, and standard
deviation sd = cvX̂ where X̂ is the expected value.

Optionally bias can be included. This will give a normal distribution with mean
X̂ + X̂ · bias.

8

4.2.3 Multivariate lognormally distributed distortion

distortion multivariate

covariance <covariance matrix>

This will draw from a multivariate lognormal distribution with expected value as above,
and the given covariance matrix with dimension (maxage − minage + 1) ∗ (maxage −
minage+ 1).

4.3 Recruitment File

The recruitment functions are defined in a file given by the control file. Several recruit-
ment functions can be listed, so that for example a fixed recruitment can be used for the
years where data on recruits are available, and a stock-recruit relationship can be used
for other years. Here is an example of such a file.

[Recruitment]

generators 2

[RecruitmentGenerator]

firstyear 2004

type fixed

years 2

; 2004 2005

numbers 308000 664000

error none

[RecruitmentGenerator]

firstyear 2006

type ockham

a 529104

b 224482

error normal

sd 0.2

trunk 2.0

The keyword generators gives the number of recruitment functions. The recruitment
functions are then listed in order. The format is as follows:

[RecruitmentGenerator]

firstyear <year>

type <function type>

<function specific input>

<error distribution>

4.3.1 Recruitment Functions

The recruitment type can be one of the following:

9

Fixed recruitment

This reads the recruitment numbers from a file. The recruitment is then:

Ry = Ny

The file format is:

type fixed

years <nr of years>

numbers <n_1 n_2 ... n_N>

Here N is the number of years that this recruitment function applies to (see above).

Beverton-Holt

Beverton-Holt gives recruitment according to the following function:

R =
a · SSB
b+ SSB

where SSB is the spawning stock biomass. The file format for this function is:

type bevertonholt

a <parameter a>

b <parameter b>

Cyclic Beverton-Holt

The cyclic beverton-holt function has this format:

type bevertonholt-cyclic

a <parameter a>

b <parameter b>

amplitude 0.43

period 6.57

phase -1.92

k 0.19

w 4.29

This gives the same recruitment as the beverton-holt function above, but with a cyclic
term included. The recruitment function is thus:

R = f(SSB)eamplitude·sin(
2π(year−1946+phase)

period
)+k(w̄−w)

where f(SSB) is the normal beverton-holt function:

R =
a · SSB
b+ SSB

10

Ricker

The Ricker recruitment function gives recruitment according to the following function:

R = a · SSB · e−b·SSB

The file format is as follows:

type ricker

a <parameter a>

b <parameter b>

[ssb-cutoff <optional parameter ssb-cutoff>]

The parameter ssb-cutoff is optional. If this parameter is given, it is used as a
maximum SSB. If the stock SSB is higher than ssb-cutoff, the value of ssb-cutoff
will be used instead of SSB in the recruitment formula above.

Ockham

The ockham recruitment function gives recruitment according to the following function:

R =

{
a if SSB ≥ b
a·SSB
b

if SSB < b

The file format is then:

type ockham

a <parameter a>

b <parameter b>

Cyclic Ockham

The cyclic ockham function has the following format:

type ockham-cyclic

a <parameter a>

b <parameter b>

amplitude 0.43

period 6.57

phase -1.92

k 0.19

w 4.29

This gives the same recruitment function as Ockham, with a cyclic term included.

R = f(SSB)eamplitude·sin(
2π(year−1946+phase)

period
)+k(w̄−w)

Where f(SSB) is the same as the standard Ockham function.

f(SSB) =

{
a if SSB ≥ b
a·SSB
b

if SSB < b

w̄ is here the mean weight in the spawning stock.
This recruitment function is further described in Bogstad et al. (2004).

11

4.3.2 Recruitment Error

For all recruitment functions an error distribution must be specified (it can be set as none
if no error is to be added). The error distribution is specified using one of the following
formats.

Normal distribution

error normal

cv <coefficient of variance>

[bias <Optional bias age vector>]

trunk <truncation>

This gives an error (ε) drawn from a normal distribution with mean = 0.0 and sd = cv.
ε is truncated to be in the range [−trunk · cv → trunk · cv]. If R is one of the recruitment
functions in Section 4.3.1 the number of recruits is then R′ = R +R · ε.

Optionally bias can be included. This gives the number of recruits as R′ = R + R ·
bias +R · ε.

Lognormal distribution

error lognormal

cv <cv on a log scale>

[bias <Optional bias age vector>]

trunk <truncation>

This gives an error (ε) drawn from a lognormal distribution with mean = 0.0 and sd = cv.
ε is truncated to be in the range [−trunk · cv → trunk · cv]. The number of recruits is
then R′ = R·eε.

Optionally bias can be included. This gives the number of recruits as R′ = R · bias +
R·eε.

No error

error none

This gives no error added to the recruitment. R′ = R.

4.3.3 Special recruitment functions

In this section we list ad-hock recruitment functions which have been added for specific
situations. They are not meant to be general.

Cyclic Haddock

This is a special recruitment function intended used for haddock. It gives recruitment
according to the following 7-year cycle:

• Four years with low recruitment.

12

• One year with good recruitment.

• Probability p of a year with outstanding recruitment,
or a year with good recruitment with probability 1− p.

• One year with good recruitment.

For the years with low recruitment a Ricker function is used. A ricker function is
also used for the good years, and an Ockham function is used for the outstanding year.
Thus three sets of recruitment parameters must be given; for the Ricker function in low
years, for the ricker function in good years, and for the Ockham function in Outstanding
years. In addition and error function must be specified after each of these recruitment
functions. The Input formats are the same as described for the Ricker function, Ockham
function, and error functions described in the previous sections. The complete format for
the cyclic haddock recruitment is thus as follows:

type haddock-cyclic

low-recruitment

a <parameter a for ricker>

b <parameter b for ricker>

[ssb-cutoff <optional parameter ssb-cutoff for ricker>]

error <error type>

<parameters for error>

good-recruitment

a <parameter a for ricker>

b <parameter b for ricker>

[ssb-cutoff <optional parameter ssb-cutoff for ricker>]

error <error type>

<parameters for error>

outstanding-recruitment

p <probability of outstanding recruitment>

a <parameter a for ockham>

b <parameter b for ockham>

error <error type>

<parameters for error>

4.4 Management File

The management file defines the management rule to use for setting the fishing quota.
It also specifies how the real model is distorted before the managers see it, and how the
decided quota is distorted before it is fed back to the real model. The format is as follows:

[ManagementDistortions]

ImplementationError distortion none

InputNumbers distortion none

InputFishing distortion none

Recruitment distortion none

13

[ManagementRule]

type <management rule>

<input for management rule>

The format for distortion is the same as for the population file (Section 4.2). The
rule type can be one of constantf, tac, or lookahead. Let F be the reference F (arithmetic
average over the age range fbarmin − fbarmax) and Sa the selection age vector. The
fishing mortality for age a is then given by:

Fa = F · Sa ·

fbarmax∑
a=fbarmin

Sa

(fbarmax− fbarmin + 1)

All the rules will calculate a quota in tons for year y + 1. We then use the selection
pattern (from the input file) to find the appropriate fishing level that gives this quota.
We then use this fishing level to calculate catch in numbers for year y + 1. This catch in
numbers is then fed back to the model and used for fishing in year y+1 after possibly being
distorted. The ImplementationError above decides how the quota is distorted before it
is fed back into the model as fishing mortality.

4.4.1 Constant F Rule

For the constant F rule the format is:

type constantF

Selection <selection age vector>

FaboveBpa <F level above Bpa>

[Fmin <Optional minimum F level>]

[FlowRec Optional keyword enable adjustment of F at low recruitment>]

[LowRec <LowRec> Recruitment belowe this number is considerd poor.]

[LowYears <years> How many years of recruitment to consider]

[Freduction <factor> At low recruitment multiply F by this factor]

[HistoricRec <recruitment vector> Historic recruitment before first year]

Maxinc <Max increase in quota from last year>

Maxdec <Max decrease in quota from last year>

MaxTAC <Max allowed catch in weight>

FirstYearTAC <quota for intermediate year>

FbelowBpa <function type>

The fbelowpa function is one of the keyword flat, low, or linear. The formats are:

flat

Which gives F = Ftarget when SSB < Bpa

low

Flow <flevel>

Which gives F = Flow when SSB < Bpa

14

linear

Bzero <Bzero>

Which gives F =
(SSB−Bzero)·FaboveBpa

Bpa−Bzero when Bzero < SSB < Bpa and F = 0 when SSB <

Bzero.

If SSB(y + 1) > Bpa and SSB(y) > Bpa, the quota is constrained by the limits on
year-to-year change indicated by the keywords maxinc and maxdec: If the quota is more
than maxinc percent larger than last years quota, or more than maxdec percent less, we
adjust the quota to be within maxdec and maxinc percent of last years quota.

If firstyeartac is −1 the maxinc and maxdec values are not used for setting the quota
in year y + 1. If firstyeartac is positive the value is used when applying the maxinc and
maxdec check in year y + 1.

The MaxTAC parameter makes it possible to use this option to apply a constant F
rule with a catch ceiling.

If the FlowRec is present, the following keywords must also be present in this exact
order:

FlowRec

LowRec <LowRec>

LowYears <years>

Freduction <factor>

HistoricRec <recruitment vector>

This option will reduce F when the stock goes through several consecutive years with
poor recruitment. The value Lowrec gives the level the average recruitment has to fall
below to be considered poor. The value LowYears specifies over how many years this
average recruitment is calculated.’ The value Freduction gives a factor by which the
target F level will be multiplied in case of poor recruitment. The recruitment vector
gives recruitment values for the years before the intermidiate year in the model. There
must be LowY ears− 1 values given.

If the optional Fmin is given, it must be followed by an F value. Whenever there is a
year where the fishing level is below this Fmin level, except in years where SSB < Bpa,
F will be adjusted up to the Fmin level. Because the constantF rule applies a constant F
level, the Fmin option is only useful if some other constrains that can potentially reduce
F are also in use.

It is not advised to use both the FlowRec and Fmin options at the same time. A
warning will be given if you do so.

4.4.2 Lookahead Rule

The Lookahead rule is a generalization of the 3-year rule. The 3-year rule was suggested
by the Joint Norwegian-Russian Fisheries Commission in 2002, as a way of stabilizing the
quota for the Northeast Arctic cod and haddock stocks by looking more than one year
into the future.

The format for the lookahead rule is similar to the format for the constantF rule
(4.4.1) with a few changes:

15

type lookahead

[years <N> Optional specification of how many years to simulate]

selection <selection age vector>

FaboveBpa <F level above Bpa>

[Fmin <Optional minimum F level>]

[FlowRec Optional keyword enable adjustment of F at low recruitment>]

[LowRec <LowRec> Recruitment below this number is considered poor.]

[LowYears <years> How many years of recruitment to consider]

[Freduction <factor> At low recruitment multiply F by this factor]

[HistoricRec <recruitment vector> Historic recruitment before first year]

Maxinc <max increase in quota from last year in percent>

Maxdec <max decrease in quota from last year in percent>

MaxTAC <max allowed catch in weight>

Firstyeartac <quota for intermediate year>

[MaxChangeRuleVariant <Optional keyword>]

Fbelowpa <function type>

The Optional keyword years specifies how many years to simulate forward when de-
ciding on the quota. If this keyword is omitted, it will be set to 3 years.

When the Lookahead Rule is used in year y to set the fishing quota for year y+ 1, we
first simulate N years forward from these starting values, with a fishing level dependent
on SSB(y+1) in the same way as in the constant F rule.

We set the quota for year y + 1 as the average of the catch in tons in the years y + 1,
y + 2, ... ,y + n from the simulation we did.

If SSB(y + 1) > Bpa and SSB(y) > Bpa, the quota is constrained by the limits
on year-to-year change in the same way as for the constant F rule. But if the optional
keyword MaxChangeRuleVariant is specified, the year-to-year change is only constrained
if SSB(y′) > Bpa for all the years y, y + 1, y + 2 and y + n.

If weight in catch is density-dependent (4.5) and the 3-year rule is used, The weight
at age in the catch used by the rule in year y + 1 is also used int the remaining years.

The options Fmin and FlowRec work as for the constantF rule, and are described in
section 4.4.1

4.4.3 3-year Rule

The 3-year rule has been deprecated, please use the lookahead rule instead.

The 3-year rule is a way of stabilizing the quota by looking more than one year ahead.
It was suggested by the Joint Norwegian-Russian Fisheries Commission in 2002, for the
Northeast Arctic cod and haddock stocks.

The format for the 3-year rule is:

type 3year

selection <selection age vector>

16

FaboveBpa <F level above Bpa>

Maxinc <max increase in quota from last year in percent>

Maxdec <max decrease in quota from last year in percent>

MaxTAC <max allowed catch in weight>

Firstyeartac <quota for intermediate year>

[MaxChangeRuleVariant <Optional keyword>]

Fbelowpa <function type>

When the 3-year Rule is used in year y to set the fishing quota for year y + 1, we
first simulate 3 years forward from these starting values, with a fishing level dependent
on SSB(y+1) in the same way as in the 3-year rule.

We set the quota for year y+ 1 as the average of the catch in tons in year y+ 1,y+ 2,
and y + 3 from the simulation we did.

If SSB(y + 1) > Bpa and SSB(y) > Bpa, the quota is constrained by the limits
on year-to-year change in the same way as for the constant F rule. But if the optional
keyword MaxChangeRuleVariant is specified, the year-to-year change is only constrained
if SSB(y′) > Bpa for all the years y, y + 1, y + 2 and y + 3.

If weight in catch is density-dependent (4.5) and the 3-year rule is used, The weight
at age in the catch used by the rule in year y+1 is also used for the years y+2 and y+3.

4.4.4 Tac Rule

For the Tac Rule the format is:

type tac

Selection <selection age vector>

maxF <maximum F level>

TAC

<y_1> <Tac_1>

<y_2> <Tac_2>

. .

. .

. .

<y_n> <Tac_n>

With this rule you simply specify in the input file the quota in tons for each year. The
maxF parameter makes it possible to use this option to apply a fixed F rule with a catch
ceiling.

4.5 Density dependent processes

In this file, you can specify that various processes in the model will be density dependent.
The processes are growth (stock weights and catch weights), maturity, and cannibalism.
In all cases the age range the process will apply to can be restricted to a subrange of
the full age range in the stock. There is also an option to give minimum and maximum
values for each age group.

The functional forms for growth, and the first maturity variant are described in
Bogstad et al. (2004). All the functions are further described below.

17

The format for density dependent processes is:

stockweight <yes or no>

<if yes, additional input for stockweight>

catchweight <yes or no>

<if yes, additional input for catchweight>

maturity <yes or no>

<if yes, additional input for maturity>

cannibalism <yes or no>

<if yes, additional input for cannibalism>

4.5.1 Growth (stockweight and catchweight)

The following function is used for weight in the stock:

wsa,y = αaTSBy−1 + βa

For weight in the catch this function is used:

wca,y = αawsa,y + βa

Both stockweight and catchweight uses the following format:

minage <minage>

maxage <maxage>

alpha <alpha parameter age vector>

beta <beta parameter age vector>

limit ; optional limit

min x1 ... xn ; minimum value for each age (optional)

max y1 ... yn ; maximum value for each age (optional)

4.5.2 Maturity

The maturation process can use one of two different functions. The function keyword
followed by densitydependent or weightdependent selects which function to use.

The densitydependent function is:

Pa,y(TSB) =
1

1 + e−α(γa−κ−TSBy−1)

Where TSB denotes total stock biomass.
The weightdependent function is:

Pa,y(wsa,y) =
1

1 + e−λa(wsa,y−w50,a)

The format for the densitydependent function is:

18

function densitydependent

minage <minage>

maxage <maxage>

alpha <alpha parameter>

kappa <kappa parameter>

gamma <gamma parameter>

limit ; optional limit

min x1 ... xn ; minimum value for each age (optional)

max y1 ... yn ; maximum value for each age (optional)

The format for the weightdependent function is:

function weightdependent

minage <minage>

maxage <maxage>

lambda <lambda parameter age vector>

w50 <w50 parameter age vector>

limit ; optional limit

min x1 ... xn ; minimum value for each age (optional)

max y1 ... yn ; maximum value for each age (optional)

4.5.3 Cannibalism

The cannibalism process can use one of two different functions. The function keyword
followed by ssblag3 or biomass6and7 selects which function to use. The ssblag3 function
is:

M2y,a = αaSSBy−3 + βa

Where SSB denotes spawning stock biomass. The biomass6and7 function is:

M2y,a = αa(Ny,6Wy,6 +Ny,7Wy,7) + βa

Both the ssblag3 and biomass6and7 function uses the following input format:

function <ssblag3 or biomass6and7>

minage <minage>

maxage <maxage>

alpha <alpha age vector>

beta <beta age vector>

limit ; optional limit

min x1 ... xn ; minimum value for each age (optional)

max y1 ... yn ; maximum value for each age (optional)

19

4.6 Historic weight and maturity

In this file, you can specify how stock weights, catch weights, and maturity are drawn
from historic time series. The format is:

numberofyears <n>

stockweight <yes or no>

file <file with historic stockweights>

catchweight <yes or no>

file <file with historic catchweights>

maturity <yes or no>

file <file with historic maturities>

Each of these files has the following format:

historicdata

d1,1 ... d1,a

...

dy,1 ... dy,a

where y is the number of years with historic data, and a is the number of age groups.

5 Prost Output Files

Summary output is written to the file summary.csv. More detailed output for indi-
vidual variables can be found in fishing.csv, distortedfishing.csv, recruit.csv,
catch.csv, ssb.csv, and tsb.csv. On the file rule.csv it is indicated how often the
various segments of a HCR are activated.

The file out.csv gives very detailed output, and can become quite large. It is most
useful for diagnostic purposes. All the output files are written as comma separated values
(.csv) and can thus be imported into Excel or other spreadsheets for further processing.

6 Suggested extensions

• Extend the linear option in the fbelowpa function with a new parameter Fzero.

The formula for F will then be: F = Fzero +
(SSB−Bzero)·FaboveBpa

Bpa−Bzero when Bzero <

SSB < Bpa and F = Fzero when SSB < Bzero.

• Extending the historic option so that fishing pattern and natural mortality also can
be drawn from historic times series.

• Allow for a non-zero proportion of F and M before spawning.

• Allow for the maximum increase/decrease in TAC from year to year to be given in
biomass in addition to as a percentage.

20

7 References

Bogstad, B., Aglen, A., Skagen, D. W., Åsnes, M.N., Kovalev, Y., Yaragina, N. A. 2004.
Evaluation of the proposed harvest control rule for Northeast Arctic cod. Pp. 396-417 in
Report of the ICES Arctic Fisheries Working Group, Copenhagen 4-13 May 2004. ICES
C.M. 2004/ACFM:28, 483 pp.

ICES 2004a. Report of the ICES Study Group for Long Term Advice, Copenhagen 23-27
February 2004. ICES C.M. 2004/ACFM:16, 38 pp.

ICES 2004b. Report of the ICES Working Group on Fish Stock Assessment Methods,
Lisbon 11-18 February 2004. ICES C.M. 2004/D:03, 232 pp.

Skagen, D. W., Bogstad, B., Sandberg, P., and Røttingen, I. 2003. Evaluation of candi-
date management plans, with references to North-east Arctic cod. ICES C.M. 2003/Y:03,
19pp.

21

	Introduction
	Installation
	Running Prost
	Command Line Options
	Scripting

	Prost Input Files
	Control file
	Weight And Maturity option

	Population File
	No distortion
	Normally distributed distortion
	Multivariate lognormally distributed distortion

	Recruitment File
	Recruitment Functions
	Recruitment Error
	Special recruitment functions

	Management File
	Constant F Rule
	Lookahead Rule
	3-year Rule
	Tac Rule

	Density dependent processes
	Growth (stockweight and catchweight)
	Maturity
	Cannibalism

	Historic weight and maturity

	Prost Output Files
	Suggested extensions
	References

